
March 1996 Robot Builder Page 1

�	�	�� ������

The Official Publication of the ROBOTICS SOCIETY OF SOUTHERN CALIFORNIA

Post Office Box 26044, Santa Ana, CA 92799–6044

PRESIDENTS MESSAGE

by Jess Jackson

Quite unusual weather the south land is having this year.
The snow began to gently fall just outside my office window.
Joan and I stepped outside for a few moments to enjoy the
winter season before the snow fall passed.

Tom Carroll, our past president, and I were concerned
about how to get RSSC to grow and prosper.

I decided to change the format of a few meetings. I chose
an open topic interactive forum so that you, the membership
could get more involved.

I selected a dozen different topics to be discussed during
the meeting. The topics were scheduled for 15 minutes each
but the discussion was lively and the items covered all
required more time. Only about half of the items were
covered.

A WarBot SIG was established and will meet at Jerry’s
place with first meeting on Mar 2. Mark Thorp, of Robot Wars
will be there to discuss the autonomous class rules and to
let us know the latest news from the founder. ROBOT WARS
96 is scheduled for Aug 9, 10, and 11 at San Francisco.

There are a number of members that have ROBOTS with
68HC11 controller boards provided by Don Golding, our past
technical VP. After talking with various members, sufficient
interest surfaced to warrant a refresher course on
programing of these boards. Don agreed to teach three 1 1/2
hour sessions.

First session will cover hardware I/O, language basics
and commands to control hardware. Second session will
cover the instinct and behavior levels of control. The third
session will cover writing goal level commands and some
problem solving algorithms.

The tentative schedule for the March meeting will be as
follows:

 11:00 fair planning meeting
 12:00 RSSC business meeting
 12:30 Break for Lunch
 1:00 General meeting
 2:30 Whiskers programing
 4:00 adjourn

 Bring your bots, completed or not, your work projects and
what ever to the meeting to share.

 Jim Benson, our news letter editor stated that he wants
interested and timely articles.

 The ROBOT FAIRE96 is now scheduled for Saturday,
Oct 5 and Sunday Oct 6. Joe McCord is heading up the fair
organization and will need your help to get all the tasks
accomplished.

 HISTORY: Some time ago I was reviewing old club
membership records. I was interested who were the
founding members of the RSSC. I was surprised at who is
still attending after six years.

 Of the 64 that signed up and joined RSSC during late
1989 and 1990, only 10 are still active in the club.

 Tom Thornton 8/29/89
 Don Golding 8/29/89
 Thomas Carroll 9/01/89
 Joseph McCord 9/01/89
 Jerry Burton 9/05/89
 George Ronnquist 11/8/89
 Tim Lewis 1/8/90
 John Sprinkle 1/22/90
 Jesse Jackson 8/13/90
 Peter Cresswell 11/7/90

 Bring your own discussion topics for the meeting and see
what a brain storming cession can do for obtaining answers.
I’ll see you all at the next meeting

In This Issue

Submission Request
Meeting Agenda

Legs

March 1996 Robot Builder Page 2

Submission Request
 We now have the capability to scan photos and

publish them in the newsletter! If you have a pho-

to of your current project –– or your past projects

–– please submit them for publication.

 Along with the photo, please give at least some

information about what it is and what it does (or

is designed to do) :–)

 Also in the works is the design and building of

an Internet “World Wide Web Home Page” that

would let computer users around the world get a

taste of what we are doing out here in Southern

California . . .

Of course, if you do not want your submission to

reach such a broad distribution, just let me know.

World Wide Web
Some sites I have seen.

US&R
 http://www.traveller.com/~insecta/

Digital Storage Scope faq

 http://www.mv.com/ipusers/wd1v/

Robot News
 http://www.robotic.com/robonews.html

OPIE the robot
 http://www.islandnet.com/~pmd

Rockies Robotic Group
 http://www.he.net/~roundy/RRG.html

Robotics Society
of

Southern California

President
Jess Jackson

Past President
Tom Carroll

Vice President Programs
Henry Arnold

Vice President Faire
Joe McCord

Secretary/Treasurer /Editor Pro Tem
Tom Thornton

Newsletter Editor
Jim Benson

Newsletter Production
Scott McGillivray

Membership
Pete Cresswell

Hospitality
Joan Jackson

 The Robot Builder is published monthly by
the Robotics Society of Southern California.
 The yearly membership fee includes a sub-
scription to this newsletter and is available for
$20.00.
 Membership applications should be directed
to:

Robotics Society of Southern California
Post Office Box 26044
Santa Ana, CA 92799–6044

 Manuscripts, drawings and other materials
submitted for publication that are to be re-
turned must be accompanied by a stamped,
self addressed envelope or container.
 However, RSSC is not responsible for unso-
licited materials.
 If possible, and if you want it to look nice in
the newsletter, please submit copy in ASCII or
RTF via diskette, email or upload.

rssc@netcom.com (Jim Benson)

Robot Dawn BBS, Host of RSSC
714–538–0614 1200/2400/v.32bis 8N1

March 1996 Robot Builder Page 3

LEGS

Tom Thornton

The most common reason to build a walking robot is for
improved maneuverability. According to the US Army, half
of the Earth’s land surface is inaccessible to wheeled or
tracked vehicles. We who build robots with legs like to think
that our creations will be able to traverse at least some of
that difficult terrain.

Another good reason to build walking robots is to see what
the issues and problems of locomotion really are. For
example, when you notice that your walking machine’s feet
won’t track a straight line, you know that animals must have
found solutions to this problem, either in the mechanics of
their bodies, or with coordination and control.

Terminology – leg links are referred to with the words used
by biologists: the femur is the upper link (thigh), the tibia is
the lower leg (shin), and the foot is the tarsus. Joints are
hips, knees, and ankles.

During locomotion, there are two distinct phases: when
the foot is on the ground, the leg is in the stance phase; when
the foot is in the air, the leg is in the swing phase.

Single degree of freedom (dof) legs move in only one axis
relative to the body of the robot. The author’s HexWalker
robot uses single (or one) dof legs. That is, each leg has only
one articulated joint and that joint has only one axis of
motion. On the HexWalker robot the four corner legs move
in the longitudinal plane (parallel to the length of the body).
In other words, the hip rotates on a vertical axis. The two
center legs move in the vertical plane. That is, the hip joint
rotates on an axis parallel to the length of the body. This
particular implementation uses three motors (rc style
servos) to drive the six legs in pairs. This is the simplest
walking machine architecture that allows a robot to move
forward and backward and to turn either left or right.

The major limitation of this design is that the robot is
restricted to flat smooth surfaces. It cannot navigate
irregularities in the surface on which it walks. Some surface
irregularities can be accommodated by increasing the lift
height of the legs.

Two dof legs have motion in two axes relative to the body
of the robot. To overcome the surface roughness limitation
each leg can be made to move longitudinally and vertically.
Two motors are used on each leg. One method is to attach
the first motor to the body which then swings the second
motor in one axis. The second motor drives the leg in the
second axis.

It is often the case in two dof legs that the knee joint is
articulated. In this configuration the femur link is can be four
bar mechanism.

This allows the tibia to remain vertical throughout the legs
full vertical range of motion. This arrangement is capable of
navigating relatively rough ground. When a robot equipped
with two dof legs is fitted with proper sensors and controllers

it can be made to traverse terrain that is impossible for any
wheeled or tracked vehicle of comparable size.

Three dof legs move in three axes relative to the robot
body. The third direction of motion transverse to the body
allows the robot foot to assume any position in a specified
volume called the working volume.. This allows the foot to
be maneuvered around a small object rather than stepping
on it or over it. It also allows the robot more latitude in
selecting foot placement. The capability of arbitrary foot
placement enjoyed by three dof legs is offset by increased
complexity and weight. For all but the simplest robots this
tradeoff is well worth the price.

Next time: Geometry. (What an acorn says when it grows
up – gee, i’m a tree!)

Neural Network Controller for Hexapod
Locomotion

from H. J. Chiel and R. D. Beer (1989?)

In studies of cockroach locomotion, Pearson and his
colleagues obtained evidence that the protraction of the
legs, i.e., the time during which they swung forward, was
probably due to the activity of non–spiking oscillatory
neurons (Pearson et al. 19973). their studies did not indicate
whether this oscillator was a single neuron or a coupled
network of neurons, but the lack of overlap between times
of activation of adjacent legs suggested that inhibitory
connections existed between oscillators for adjacent legs.

Based on these results, we proposed a neural network
architecture for the control of locomotion (Beer et al. 1989).
Since the oscillatory system had not been specified
experimentally, we created a model pacemaker neuron.
Two intrinsic currents controlled the behavior of the
pacemaker: One induced it to remain depolarized for a fixed
period of time, and a second induced it to remain
hyperpolarized. The duration of the second intrinsic current
varied as a function of the voltage of the pacemaker, so that
when the pacemaker was hyperpolarized, the time between
bursts was lengthened, and when it was depolarized, the
time between bursts was shortened. In addition, brief
excitatory inputs during the time a pacemaker was off could
turn it on and reset the phase of its bursting; brief inhibitory
inputs when it was on could similarly reset its bursting
phase. These pacemaker properties have been observed
experimentally in nerve cell (Kandel 1976).

The neural network consisted of sex pacemakers, one for
each leg. Interactions between pacemakers were modeled
after the interactions that had been deduced to exist
between the flexor burst generators: Adjacent pacemakers
inhibited one another. finally, as a model of higher–order
influences that are known to activate locomotion, we
connected a single command neuron to all six pacemakers.
Its steady excitation or inhibition of the pacemakers caused
them to oscillate at different frequencies, due to their
intrinsic properties (see figure).

March 1996 Robot Builder Page 4

C

P

P

P

P

P

P

Neural Network for
Control of Hexapod
Locomotion

C – Command neuron

P – Pacemaker neuron

L – left

L1

L2

L3

R1

R2

R3

R – Right

1 – front legs

2 – middle legs

3 – back legs

Inhibition

Excitation

If the command neuron provided identical inputs to each
pacemaker, we found that only one pattern of activity was
generated by the network: Sets of nonadjacent pacemakers
alternate activity. When one set of pacemakers was on, they
inhibited all the pacemakers that could inhibit them, and their
intrinsic currents provided self–excitation for the duration of
their burst. In fact, when the network was in this state, we
found that small perturbations such as injecting small
depolarizing or hyperpolarizing currents into the
pacemakers did not cause it to change state. Once the
depolarizing intrinsic current shut off, however, the other
triad of pacemakers was released from inhibition and
depolarized in response to the steady input from the
command neuron. Since their inhibitory intrinsic current was
ready to shut off, their depolarizing intrinsic current turned
on, and the network moved to its other stable state.
Interpreting the outputs of the pacemakers as motor
commands, one would say that the network was generating
a tripod gait, in which alternating tripods of legs provide
support and push backward, while the other tripod swings
forward.

SORTING ALGORITHMS

Tom Thornton

So your new sonar is working fine. Pings on command,
reads echoes, scans through the designed angle, and
cranks out time of arrival and azimuth data – wonderful. Now
you have a table full of data but what does it mean? How can
you use the data?

What direction is the closet target (obstacle)? Well, you
could scan the list for the smallest time of arrival and read
the accompanying azimuth value. But that’s too easy (and
obviates this space consuming article). A more interesting

and compute intensive method is to sort the table in time of
arrival order.

It turns out that there a number of ways to do this, and
these several ways have names – Bubble, Selection,
Insertion, and others. Which of these sort routines is best for
you data set and the constraints of your available processing
power? This article discusses some of the pros and cons of
these sorting algorithms.

Bubble sort – make multiple passes through the data set.
At each element, exchange adjacent elements if necessary.
When one complete pass through the data is made with no
exchanges, the sort is complete. In C it this looks like:

bubble(int a[], int N)
{

int i, j, t;
for (i=N; i>+1; i––)

for (j=2; j<+i; j++)
if (a[j–1] > a[j])

{t=a[j–1];a[j–1]=a[j];a[j]=t;}
}

On the first pass the largest element is swapped until it is
in the last position. On subsequent passes the next
elements are swapped until they are in proper position in the
array. A LOT of work takes place to put everything in place.

Bubble performance – bubble sort uses about N2/2
comparisons and N2/2 exchanges on the average and in the
worst case. When the file is in reverse order (worst case) the
ith pass requires N–i comparisons and exchanges. Running
time of this sort depends on input – only one pass is required
if the file is already in order.

Selection sort – find the smallest element in the array,
exchange it with the element in the first position. Then find
the 2nd smallest element and swap it with the second
element. Continue until the data set is sorted. This is called
selection sort because is repeatedly “selects” the smallest
remaining element. In C it can be written as:

selection(int a[], int N)
{

int i, j, min, t;
for (i=1; i<N; i++)
{

min=i;
for (j=i+1; j<=N; j++)

if (a[j]<a[min]) min=j;
t = a[min]; a[min] = a[i]; a[i] = t;

}
}

As you pass down through the array elements above you
are already sorted. When you get to the end of the array the
data are fully sorted.

Selection sort performance – process uses about N2/2
comparisons and N exchanges. For each i from 1 to N–1,
there is one exchange and N–i comparisons, so there is a
total of N–1 exchanges and N(N–1)/2 comparisons. This
holds no matter what the input data is: the only part of
selection sort that does depend on the input is the number
of times min is updated. In the worst case this could also be
quadratic but in the average case this quantity is only O(N
logN), so we can expect the running time of selection sort to
disregard input data.

March 1996 Robot Builder Page 5

Insertion sort – comparable to selection sort but
somewhat more flexible. Each element is considered and
inserted by moving larger elements one position down in the
array and then inserting the element into the empty slot. A
C implementation is:

insertion(int a[], int N)
{

int i, j, v;
for (i=2; i<+N; i++)
{

v=a[i]; j=i;
while (a[j–1]>v)

{ a[j]=a[j–1]; j––; }
a[j]=v;

}
}

Similar to selection sort, elements above the action point
are in sorted order during the sort, but they may have to be
moved to make room for smaller elements found later. The
array is fully sorted when the index reaches the right end.

Insertion sort performance – this process is linear for
almost sorted data. Insertion sort works well for some types
of non–random files that often arise in practice. Consider the
operation of insertion sort on a file which is already sorted.
Each element is immediately determined to be in its proper

place in the file, and the total running time is linear. The same
is true for bubble sort, but selection sort is still quadratic.
Even if a file is not completely sorted, insertion sort can be
quite useful because its running time depends quite heavily
on the order present in the file. The running time depends on
the number of inversions: for each element count up the
number of elements above it which are greater. This is the
distance the elements have to move when inserted into the
file during the sort.

Conclusions – as a rule these methods take about N2
steps to sort N random items. If N is small enough this may
not be a problem. If the items are not random some methods
may run much faster than more sophisticated ones. These
methods should not be used for large, randomly arranged
files.

So where does that leave our array of sonar sensor data?
Sad to say, but none of the above sort processes are
suitable for any but the smallest data sets. The method of
choice for data sets such as we might be expecting to work
with is the Shell Sort – but that is another story.

The above statistics on sort algorithms are found in
“Algorithms in C” by Robert Sedgewick, Addison–Wesley
1990, isbn 0–201–51425–7.

The Robotics society of southern California was originally formed in 1989 as a non–profit experimental robotics association. The goal was
to establish a co–operative association among associated industries, educational institutions, professionals and particularly robot
enthusiasts. membership in the society is open to all with an interest in this exciting field.

The primary goal of the society is to promote public awareness of the field of experimental robotics and encourage the development of
personal and home based robots. We meet on the 2nd Saturday of each month at Orange Coast College in Costa Mesa.

The RSSC publishes this monthly newsletter, Robot Builder, that discusses various society activities, robot construction projects, and other
information of interest to members.

Membership / Renewal Application:

Name

Address

City

Home Phone () – Work Phone () –

Annual Dues: Newsletter & Membership ($20) Check #

Return To: RSSC
Post Office Box 26044
Santa Ana, CA 92799–6044

Area(s) of Interest / Background

How did you here about RSSC?

March 1996 Robot Builder Page 6

Robotics Society of Southern California
Post Office Box 26044
Santa Ana, CA 92799–4066

Please check your address label to be
sure your subscription will not expire!!!

Address Correction Requested

NEW Technology Building

Park
Here

Merrimac Way

F
ai

rv
ie

w
 D

riv
e

Arlington Drive

Orange County
Fairgrounds

ORANGE
COAST
COLLEGE

Adams Avenue

H
ar

bo
r

F
ai

rv
ie

w

405

55Adams

Merrimac
OCC

(OCC)

Victoria

The Robotics Society of Southern California meets the Second Saturday of the month at Orange Coast Collage.
Take Fairview Blvd south from the 405 then turn right on Merrimac Way. Free Parking.

** Look for the building with the green glass roof **

